![]() |
Добро пожаловать, гость ( Вход | Регистрация )
Публикующим:
1. Задачу можно опубликовать двумя способами:
- создав для нее отдельную тему с информативным названием;
- добавив задачу в готовый сборник (например «Бескрылки», «Мини-задачи», «Вопросы ЧГК») или создав свой (например, «Загадки от /для Светы»).
2. Если вы публикуете задачу, решение которой не знаете, напишите об этом. По умолчанию считается, что вам известен правильный ответ и вы готовы проверять других игроков.
Решающим:
1. В темах запрещается писать ответы и подсказки, если возможность открытого обсуждения не оговорена отдельно (в случае открытого обсуждения для текста следует использовать цвет фона или белый, оставляя другим игрокам возможность самостоятельного решения).
2. Правильность решения можно проверить, написав личное сообщение автору.
![]() |
snav |
![]()
Сообщение
#1
|
Kорифей ![]() ![]() ![]() ![]() Группа: Модераторы Сообщений: 4 135 Регистрация: 13.4.2008 Из: Россия Пользователь №: 7 457 ![]() |
Приглашаю любителей математики обсудить один любопытный парадокс.
Вам предлагаются два конверта с деньгами (взвешивать, ощупывать и просвечивать их, разумеется, нельзя). Вы знаете, что в одном из конвертов сумма ровно в два раза больше, чем в другом, однако в каком и какие именно суммы — неизвестно. Вам позволено открыть любой конверт на выбор и пересчитать в нём деньги. После чего вы должны выбрать: взять себе этот конверт или обменять его на второй (уже не глядя). Вопрос: как вам поступить, чтобы получить большую сумму денег? Предположим, мы увидели в одном из конвертов 4$. Стало быть, в другом конверте лежат либо 8$, либо 2$ с вероятностью 50х50. По теории вероятностей математическое ожидание денег во втором конверте: 1/2*8 + 1/2*2 = 5$. То есть, изменив свой выбор, мы в среднем получим 5$, а взяв первый конверт — только 4$. Значит, разумнее выбирать именно второй конверт. Но это противоречит интуитивной симметрии задачи. Самое удивительное, что приведенные рассуждения можно применить для любой суммы X, обнаруженной в первом конверте. Получается, что независимо от обнаруженной суммы выбор следует изменять в любом случае, т.е. можно даже не заглядывать в первый конверт. Но это явный абсурд. Вопрос: где ошибка в рассуждениях? Обратите внимание, вопрос стоит не о том, как правильно решить задачу выбора конверта. Вопрос стоит о том, где ошибка в приведенных в рассуждениях. --------------------------------------------------- P.S. Рекомендую также прочитать: Уточненная формулировка парадокса Парадокс с известным распределением (сообщение #9). Предполагаемые решения парадокса: Однократная игра с неизвестным распределением Однократная игра с известным распределением Многократная игра с известным распределением Сообщение было отредактировано snav: 26.9.2015, 7:05 |
![]() ![]() |
Breghnev |
![]()
Сообщение
#2
|
Участник ![]() ![]() Группа: Пользователи Braingames Сообщений: 113 Регистрация: 8.5.2008 Из: Йошкар-Ола Пользователь №: 7 813 ![]() |
Не даёт мне покоя эта тема. В исследованиях бесконечностей я, признаться, слабоват. Поэтому хочу разобраться хотя бы с конечным вариантом задачи. Скажите, можно ли поставить её следующим образом?
Существует некоторое конечное количество пар конвертов таких, что в одном из конвертов пары сумма ровно в два раза больше, чем в другом. При этом в первой паре конвертов (с наименьшими суммами) лежат 1 и 2 рубля, во второй - 2 и 4 рубля, в третьей - 4 и 8 рублей и т.д. Вам неизвестно, какие суммы могут лежать в конвертах (известно только первое условие про соотношение сумм в конвертах). Случайным образом выбирается пара конвертов (с равной вероятностью для каждого), после чего вам позволено выбрать и открыть один из двух конвертов на выбор и пересчитать в нём деньги. После этого вы должны решить: взять себе этот конверт или обменять его на второй (без возможности повторного обмена). Что делать: менять конверт или нет? Корректна ли постановка задачи? Сходна ли она с классической? Есть ли место парадоксу в такой формулировке? У меня есть твёрдое мнение на этот счёт, но я бы хотел сначала услышать что-то от вас. Сообщение было отредактировано Breghnev: 13.8.2015, 21:37 |
![]() ![]() |
![]() |
Упрощённая версия | Сейчас: 20.7.2025, 5:33 |